Regioselectivity in the Westphal Condensation

Adolfo Díaz, María P. Matia, José L. García-Navío, Juan J. Vaquero, and Julio Alvarez-Builla*

Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain

Received August 2, 1994

The Westphal condensation ${ }^{1}$ is the basis of convenient easy methodology to build up quaternary aromatic nitrogen bridgehead systems by means of a condensation between α-methylcycloimmonium salts and 1,2 -diketones. ${ }^{2}$ This procedure has been applied to the synthesis of alkaloids such as sempervirine ${ }^{3}$ and flavocorylene ${ }^{4}$ which incorporate the zwitterionic indolo[2,3-a]quinolizinium ring system. In order to avoid the formation of regioisomers symmetrical 1,2-diketones have always been employed in the condensation.

Recently, we have been testing the method with unsymmetrical 1,2-diketones, and we present here the results obtained from the reaction of 1-aryl-1,2-propanediones (phenyl, 2 -thienyl, p-tolyl, and 4 -pyridyl) with some representative α-methylcycloimmonium substrates (Scheme 2).

Deprotonation of the starting salt 4 should produce the more stable N -ylide intermediate 5 , which should be the attacking nucleophile. In the presence of the diketone 7, two alternative intermediates are possible. On kinetic grounds, the attack should take place at the more reactive methyl-substituted carbonyl group leading to structure I via the intermediate 8. However, the thermodynamically controlled product II, passing through the more conjugated intermediate 9 , is the alternative possibility. The molar ratio I:II should be highly dependent on the electronic character of the aryl group in the starting diketone 7 ($\mathrm{R}=\mathrm{Ar}$). Thus, diketones bearing π-excessive arenes would increase conjugation in the intermediate 9 with the consequent rise in the proportion of II, while conversely, with π-deficient systems, kinetic control should favor the predominance of I in the final product.

The results in Table 1^{5} show how kinetic control predominates with 1-(4-pyridyl)- and 1-phenyl-1,2-propanediones, producing only 3 -methyl derivatives I. In contrast, π-excessive aromatic systems such as 1 -(2 -thienyl)-, and to a lesser extent, 1 -(p-tolyl)-1,2-propanedione, produced significant amounts of regioisomers II, as a consequence of the higher stability of the more conjugated intermediate. Moreover, when 2,3-pentanedione was used (entries 1, 6, 18, and 23) to demonstrate the

[^0]

E.1-5 ($\mathrm{X}=\mathrm{C}-\mathrm{COOEt}$)
E)
E. $6-8(X=C-C O O E)$ E. 9-10 ($X=C$ COOEA E. $23-27(X=N)$

E.11-13 ($\mathrm{X}=\mathrm{C}-\mathrm{COOEt}$)

E. 14-17 ($\left.R^{1}=H, X=N\right)$
E. 18-22 $\left(R^{1}=P h, X=N\right.$

Figure 1. Substrates used in entries 1-22 in Table 1.
Scheme 1

Scheme 2

behavior of a diketone with no electronic effects differentiating between carbonyls, an approximately 50:50 mixture was formed.

The structures of the isolated products have been established using homonuclear NOE difference spectroscopy, ${ }^{6}$ employing a through-space connection between the protons, $\mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 4-\mathrm{H}$, of the pyridinium, or $\mathrm{C} 1-\mathrm{H}$ of the pyridazinium moieties, and those of the methyl group directly attached to these fragments.

[^1]Table 1. Westphal Condensations Performed To Obtain Compounds 10

entry	heterocycle	X	Z	R	react. time (h) solvent, temp	10 I:II ratio ${ }^{\text {a }}$	yield (\%) ${ }^{\text {b }}$
1	2-pyridyl	CCOOEt	CH	ethyl	$20, \mathrm{Me}_{2} \mathrm{CO}, \mathrm{rt}$	50:50 (11:12)	88
2	2-pyridyl	CCOOEt	CH	phenyl	15, $\mathrm{Me}_{2} \mathrm{CO}$, rt	100:0 (13)	$67^{\text {c }}$
3	2-pyridyl	CCOOEt	CH	p-tolyl	24, $\mathrm{Me}_{2} \mathrm{CO}, \mathrm{rt}$	75:25 (14:15)	92
4	2-pyridyl	CCOOEt	CH	2-thienyl	24, $\mathrm{Me}_{2} \mathrm{CO}$, rt	40:60 (16:17)	88
5	2-pyridyl	CCOOEt	CH	4-pyridyl	2, $\mathrm{Me}_{2} \mathrm{CO}, \mathrm{rflx}$	100:0 (18)	$81^{\text {c }}$
6	1-isoquinolyl	CCOOEt	CCOOEt	ethyl	3.5, $\mathrm{Me}_{2} \mathrm{CO}$, rflx	80:20 (19:20) ${ }^{\text {d }}$	75
7	1-isoquinolyl	CCOOEt	CH	phenyl	5, $\mathrm{Me}_{2} \mathrm{CO}$, rflx	100:0 (21)	$45^{\text {c }}$
8	1-isoquinolyl	CCOOEt	CH	2-thienyl	3.5, $\mathrm{Me}_{2} \mathrm{CO}$, rflx	50:50 (22:23)	85
9	1-(pyrido[3,4-b]indol)yl	CCOOEt	CH	phenyl	3, EtOH, rflx	100:0 (24)	70^{e}
10	1-(pyrido [3,4-b]indol)yl	CCOOEt	CH	4-pyridyl	2, EtOH, rflx	100:0 (25)	60°
11	2-(4,5-dimethylthiazol)yl	CCOOEt	CH	phenyl	2.5, $\mathrm{Me}_{2} \mathrm{CO}$, rflx	100:0 (26)	57°
12	2-(4,5-dimethylthiazol)yl	CCOOEt	CH	p-tolyl	2.5, $\mathrm{Me}_{2} \mathrm{CO}$, rflx	100:0 (27)	$52^{\text {c }}$
13	2-(4,5-dimethylthiazol)yl	CCOOEt	CH	4-pyridyl	2, EtOH, rflx	100:0 (28)	70^{e}
14	2-(3-methylbenzimidazol)yl	N	N	phenyl	2.5, EtOH, rflx	100:0 (29)	81^{e}
15	2-(3-methylbenzimidazol) yl	N	N	p-tolyl	2.5, EtOH, rflx	80:20 (30:31)	70
16	2-(3-methylbenzimidazol)yl	N	N	2-thienyl	3, EtOH, rflx	25:75 (32:33)	42
17	2-(3-methylbenzimidazol)yl	N	N	4 -pyridyl	1, EtOH, rflx	100:0 (34)	76^{e}
18	2-(3-benzylbenzimidazol)yl	N	N	ethyl	3, EtOH, rflx	40:60 (35:36)	62
19	2-(3-benzylbenzimidazol)yl	N	N	phenyl	3.5, $\mathrm{EtOH}, \mathrm{rflx}$	100:0 (37)	60^{e}
20	2 -(3-benzylbenzimidazol)yl	N	N	p-tolyl	5, EtOH, rflx	60:40 (38:39)	74
21	2-(3-benzylbenzimidazol)yl	N	N	2-thienyl	2, EtOH, rflx	33:66 (40:41)	88^{e}
22	2-(3-benzylbenzimidazol)yl	N	N	4 -pyridyl	1, EtOH, rflx	100:0 (42)	79^{e}
23	1 -(pyrido $[3,4-b]$ indol) yl	N	N	ethyl	2.5, $\mathrm{EtOH}, \mathrm{rflx}$	50:50 (43:44)	86
24	1 -(pyrido [3,4-b]indol)yl	N	N	phenyl	3, EtOH, rflx	100:0 (45)	37°
25	1-(pyrido[3,4-b]indol)yl	N	N	p-tolyl	2, EtOH, rflx	66:33 (46:47)	$85^{\text {c }}$
26	1 -(pyrido[3,4-b]indol)yl	N	N	2-thienyl	3, EtOH, rflx	25:75 (48:49)	$91^{\text {c }}$
27	1-(pyrido[3,4-b]indol)yl	N	N	4-pyridyl	2, EtOH, rflx	100:0 (50)	$36^{\text {c }}$

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. Compound identification is shown in brackets. ${ }^{b}$ Total yield in 10 I:II mixture. ${ }^{c}$ Experimental procedure. Method A. ${ }^{d}$ Overlapped signals. ${ }^{e}$ Experimental procedure. Method B. Abbreviations: rt, room temperature; rflx, reflux.

In conclusion, the Westphal condensation, when performed using 1-aryl-1,2-propanediones, shows a typical kinetic $v s$ thermodynamic control pattern, showing preference for the kinetically-controlled regioisomers. Mixtures of varying composition were obtained when π-excessive aryl groups were present in the 1,2-dicarbonyl fragment.

Experimental Section

Melting points are uncorrected. Mesitylenesulfonate anion signals are independent of the heterocyclic cations and appear at fixed values: 2.2 ppm for the p-methyl group, 2.4 ppm for the two o-methyl groups, and 6.7 ppm for the aromatic protons, and are not listed.

Starting heterocycles and 1,2-dicarbonyls were commercially available or obtained by previously described methods. ${ }^{7}$ The (ethoxycarbonyl)methyl salts $\mathbf{4 a - d}$ (Scheme 2) were obtained as described for pyridine, ${ }^{8 a}$ isoquinoline, ${ }^{9} \beta$-carboline, ${ }^{4}$ and thiazole ${ }^{8 b}$ derivatives, respectively. The N-amino salts $4 e, g$ were obtained as described for 1 -methylbenzimidazole ${ }^{2 \mathrm{~d}}$ and β-carboline ${ }^{3}$ derivatives. Only experiments allowing the isolation of single isomers are described.

1-Amino-3-benzyl-2-methylbenzimidazolium Mesitylenesulfonate (4f). To a stirred solution of amino mesitylenesulfonate (MSH) ($0.97 \mathrm{~g}, 4.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 1-benzyl-2-methylbenzimidazole ($1 \mathrm{~g}, 4.5 \mathrm{mmol}$) in CH_{2} $\mathrm{Cl}_{2}(5 \mathrm{~mL})$ dropwise. After 10 min of stirring at room temperature, $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate the N -aminobenzimidazo-
(7) Both 2,3-pentanedione and 1-phenyl-1,2-propanedione are commercially available, 1-(2-thienyl)- and 1-(p-tolyl)-1,2-propanediones were prepared by nitrosation of the corresponding 1 -substituted 1 -propanones with isoamyl nitrite and final acid hydrolysis of the formed α-oximino ketones as described by Gianturco, M. A. et al. Tetrahedron, 1964, 2951-2961. Finally, the 4-pyridyl derivative was obtained, as described by Knaus, E. E. Can. J. Chem., 1980, 58, 130133, starting with 4 -pyridinecarboxaldehyde.
(8) (a) Alvarez-Builla, J.; Gonzalez Trigo, G.; Ezquerra, J.; Fombella, M. E. J. Heterocycl. Chem. 1985, 22, 681-685. (b) Galera, C.; Vaquero, J. J.; Garcia Navio, J. L.; Alvarez-Builla, J. J. Heterocycl. Chem. 1986, 23, 1889-1892.
(9) Ezquerra, J.; Alvarez-Builla, J. J. Heterocycl. Chem. 1986, 23, 1151-1157.
lium salt, which was filtered and recrystallized from EtOH $\mathrm{Et}_{2} \mathrm{O}$ to give 1.48 g of $\mathbf{4 f}, 75 \%$: mp $195-198{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1654$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.89$ ($\mathrm{s}, 3 \mathrm{H}$); 5.77 ($\mathrm{s}, 2 \mathrm{H}$); 6.65 (bs, $2 \mathrm{H}) ; 7.3-7.4(\mathrm{~m}, 5 \mathrm{H}) ; 7.57(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$); 7.63 (t, $1 \mathrm{H}, J=$ 7.6 Hz); 7.86 (d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}$); $7.90(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}$). Anal. Caled for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.87 ; \mathrm{H}, 6.21 ; \mathrm{N}, 9.60$. Found: C, 65.52; H, 5.95; N, 9.28.

Westphal Condensation. General Procedure. Equimolar amounts of the corresponding azinium or azolium salt 4 (10 mmol), the dicarbonyl compound, and anhydrous sodium acetate were refluxed in the dry solvent indicated (10 mL), for the time described (Table 1). Method A. When a precipitate formed, the warm mixture was filtered and crystallization of the residue yielded the condensation product, which was analytically pure. Method B. Alternatively, when no precipitate was observed, the reaction mixture was concentrated to dryness, the residue triturated with acetone, and the mixture filtered. Recrystallization of the solid afforded the condensation product.
3-Methyl-2-phenylquinolizinium Bromide (13). Obtained by method A, 67\%: mp $227-229^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{Et}_{2} \mathrm{O}$); IR (KBr) $1631 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 2.49(\mathrm{~s}, 3 \mathrm{H}) ; 7.5-7.6(\mathrm{~m}, 5 \mathrm{H})$; 8.07 (t, 1H, $J=7.2 \mathrm{~Hz}$); 8.33 (t, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$); $8.5-8.6$ (m , $2 \mathrm{H}) ; 9.31(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; 9.50(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrN} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.15 ; \mathrm{H}, 4.89 ; \mathrm{N}, 4.53$. Found: C, 62.10; $\mathrm{H}, 4.92$; N, 4.55 .
3-Methyl-2-pyridylquinolizinium Bromide (18). Obtained by method $\mathrm{A}, 81 \%$: $\mathrm{mp} 251-253{ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{IR}(\mathrm{KBr}) 1638 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.46(\mathrm{~s}, 3 \mathrm{H}) ; 7.65(\mathrm{~d}$, $2 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 8.12(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 8.37(\mathrm{t}, 1 \mathrm{H}, J=8.0$ Hz); $8.53(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 8.61(\mathrm{~s}, 1 \mathrm{H}) ; 8.81(\mathrm{~d}, 2 \mathrm{H}, J=5.1$ $\mathrm{Hz}) ; 9.32(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}) ; 9.50(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrN}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.44 ; \mathrm{H}, 4.74$; $\mathrm{N}, 8.78$. Found: $\mathrm{C}, 56,25$; H, 4.89; N, 8.61 .
3-Methyl-2-phenylbenzo[a]quinolizinium Bromide (21). Obtained by method A, 45\%: mp 337-339 ${ }^{\circ} \mathrm{C}$ (from EtOH$\mathrm{Et}_{2} \mathrm{O}$); IR (KBr) $1639 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.54$ ($\mathrm{s}, 3 \mathrm{H}$); $7.6-7.7(\mathrm{~m}, 5 \mathrm{H}) ; 8.00(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}) ; 8.10(\mathrm{t}, 1 \mathrm{H}, J=7.3$ $\mathrm{Hz}) ; 8.25(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 8.33(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 8.91(\mathrm{~d}$, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 9.27(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}) ; 9.33(\mathrm{~s}, 1 \mathrm{H}) ; 9.55(\mathrm{~s}$, 1 H). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NBr}^{2} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.19 ; \mathrm{H}, 5.22 ; \mathrm{N}$, 3.63. Found: C, 62.12; H, $5.51 ; \mathrm{N}, 3.32$.

3-Methyl-2-phenyl-12H-indolo[2,3-a]quinolizinium Bromide (24). Obtained by method B, 70% : $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$); IR (KBr) $1633 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.51$ (s,
$3 \mathrm{H}) ; 7.44(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 7.6-7.7(\mathrm{~m}, 6 \mathrm{H}) ; 7.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}) ; 8.41(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 8.78(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 8.90$ (s, 1H); $8.94(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 9.43(\mathrm{~s}, 1 \mathrm{H}) ; 13.35(\mathrm{bs}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{BrH}_{2} \mathrm{O}: \mathrm{C}, 64.87 ; \mathrm{H}, 4.70 ; \mathrm{N}, 6.88$. Found: C, 64.52; H, 4.97; N, 6.56 .
3-Methyl-2-pyridyl-12H-indolo[2,3-a]quinolizinium Bromide (25). Obtained by method A, 60% : mp $>360^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$); IR (KBr) $1633 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.53$ (s , 3 H); 7.48 ($\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$); $7.73(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$); 7.86 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$); 8.01 (d, $2 \mathrm{H}, J=4.8 \mathrm{~Hz}$); 8.46 (d, $1 \mathrm{H}, J=7.7$ $\mathrm{Hz}) ; 8.90(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) ; 9.0-9.1(\mathrm{~m}, 4 \mathrm{H}) ; 9.53(\mathrm{~s}, 1 \mathrm{H}) ; 13.48$ (s, 1 H). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{Br} \mathrm{P}^{1 / 2} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.17 ; \mathrm{H}, 4.29$; N, 10.52. Found: C, $62.93 ; \mathrm{H}, 4.61 ; \mathrm{N}, 10.73$.

1,2,6-Trimethyl-5-phenylthiazolo[3,2-a]pyridinium Bromide (26). Obtained by method A, 57% : mp $273-275^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{IR}(\mathrm{KBr}) 1636 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.53$ (s , $3 \mathrm{H}) ; 2.69(\mathrm{~s}, 3 \mathrm{H}) ; 2.72(\mathrm{~s}, 3 \mathrm{H}) ; 7.5-7.6(\mathrm{~m}, 5 \mathrm{H}) ; 8.46(\mathrm{~s}, 1 \mathrm{H})$; 9.04 (s, 1 H). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NSBrH}_{2} \mathrm{O}: \mathrm{C}, 54.55 ; \mathrm{H}$, $5.15 ; \mathrm{N}, 3.97$. Found: C, $54.53 ; \mathrm{H}, 5.35 ; \mathrm{N}, 3.69$.

1,2,6-Trimethyl-5-p-tolylthiazolo[3,2-a]pyridinium Bromide (27). Obtained by method A, 52% : mp 251-253 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{IR}(\mathrm{KBr}) 1633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.44$ (s, $3 \mathrm{H}) ; 2.54$ ($\mathrm{s}, 3 \mathrm{H}$); 2.69 (s, 3H); 2.71 (s, 3H); 7.39 (d, 1H, $J=8.1$ $\mathrm{Hz}) ; 7.47(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 8.44(\mathrm{~s}, 1 \mathrm{H}) ; 9.02(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NSBr}: \mathrm{C}, 58.62 ; \mathrm{H}, 5.21 ; \mathrm{N}, 4.02$. Found: C, 58.37; H, 5.11; N, 4.42.

1,2,6-Trimethyl-5-pyridylthiazolo[3,2-a]pyridinium Bromide (28). Obtained by method B, 70%, mp $285-287^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{IR}(\mathrm{KBr}) 1627 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.58$ (s, $3 \mathrm{H}) ; 2.74(\mathrm{~s}, 3 \mathrm{H}) ; 2.77$ (s, 3H); $8.19(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 8.71$ (s, $1 \mathrm{H}) ; 9.03(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; 9.19(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{SBry} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.00 ; \mathrm{H}, 4.85 ; \mathrm{N}, 7.93$. Found: C, 50.78 H, 5.00; N, 7.78.

2,5-Dimethyl-3-phenylpyridazino[1,6-a]benzimidazolium Mesitylenesulfonate (29). Obtained by method B, 81\% $\mathrm{mp} 235-238{ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$); IR (KBr) $1636 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.70(\mathrm{~s}, 3 \mathrm{H}) ; 4.24(\mathrm{~s}, 3 \mathrm{H}) ; 7.6-7.7(\mathrm{~m}, 5 \mathrm{H})$; $7.81(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 7.94(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 8.21(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}) ; 8.44(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}) ; 8.90(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{~S}$: $\mathrm{C}, 68.47 ; \mathrm{H}, 5.75 ; \mathrm{N}, 8.87$. Found: $\mathrm{C}, 68.38$; H, 5.55; N, 8.76.

2,5-Dimethyl-3-pyridylpyridazino[1,6-a]benzimidazolium Bromide (34). After complexion of the refluxing time (Table 1), the solution was acidified with HBr drops (48%), and then the standard workup (method B) was carried out, 76% : mp $260-262{ }^{\circ} \mathrm{C}$ (from EtOH-Et2O); IR (KBr) $1636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) 2.73 (S, 3H); $4.29(\mathrm{~s}, 3 \mathrm{H}) ; 7.8-7.9(\mathrm{~m}, 3 \mathrm{H}) ; 8.00(\mathrm{t}$, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 8.26(\mathrm{~d}, 1 \mathrm{H}, J=8.40 \mathrm{~Hz}) ; 8.50(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}) ; 8.94(\mathrm{~d}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 9.09(\mathrm{~s}, 1 \mathrm{H})$. Anal. Caled for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{Br}_{2} \mathrm{O}$: C, $54.70 ; \mathrm{H}, 4.59 ; \mathrm{N}, 15.01$. Found: C, 54.38 ; H, 4.76; N, 14.89 .

5-Benzyl-2-methyl-3-phenylpyridazino[1,6-a]benzimidazolium Mesitylenesulfonate (37). Obtained by method B, 60% : mp 192-194 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$); IR (KBr) $1626 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.57$ (s, 3H); 6.10 (s, 2H); 7.3-7.5 (m, 5H); $7.6-7.7(\mathrm{~m}, 5 \mathrm{H}) ; 7.81(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 7.89(\mathrm{t}, 1 \mathrm{H}, J=8.3$ Hz); $8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}) ; 8.50(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 9.13$ (s, 1H). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.81 ; \mathrm{H}, 5.86 ; \mathrm{N}$, 7.40. Found: C, 69.81; H, 5.54; N, 7.29.

5-Benzyl-3-methyl-2-(2-thienyl)pyridazino[1,2-a]benzimidazolium Mesitylenesulfonate (40). Obtained by method B, 60% : mp 218-220 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CN}$); IR (KBr) $1636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.88(\mathrm{~s}, 3 \mathrm{H}) ; 6.07(\mathrm{~s}, 2 \mathrm{H}) ; 7.3-7.4(\mathrm{~m}, 4 \mathrm{H})$;
$7.5-7.6(\mathrm{~m}, 2 \mathrm{H}) ; 7.79(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) ; 7.88(\mathrm{t}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}) ; 7.9-8.0(\mathrm{~m}, 2 \mathrm{H}) ; 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}) ; 8.45(\mathrm{~d}, 1 \mathrm{H}, J=$ 8.0 Hz); $9.26(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}-1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, 65.93; H, 5.35; N, 7.44. Found: C, 65.76; H, 5.18; N, 7.60.

5-Benzyl-2-methyl-3-(2-thienyl)pyridazino [1,2-a]benzimidazolium Bromide (41). This compound was isolated from the mother liquor of 39 by acidification of the acetone solution with $\mathrm{HBr}(48 \%), 28 \%$: mp $285-287^{\circ} \mathrm{C}$ (from EtOH); IR (KBr) $1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{6}$) $\delta 2.98$ ($\mathrm{s}, 3 \mathrm{H}$); 6.12 ($\mathrm{s}, 2 \mathrm{H}$); $7.3-$ $7.5(\mathrm{~m}, 6 \mathrm{H}) ; 7.79(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 7.87(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz})$; $7.96(\mathrm{dd}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}) ; 8.04(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz})$; 8.09 (dd, $1 \mathrm{H}, J=2.6 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}) ; 8.47(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$; 9.16 (s, 1H). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{SBr}^{1 / 2} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 59.32 ; \mathrm{H}$, 4.30 ; N, 9.44. Found: C, 59.46 ; H, 4.17; N, 9.28.

5-Benzyl-2-methyl-3-pyridylpyridazino[1,6-a]benzimidazolium Mesitylenesulfonate (42). Obtained by method B 79% : mp 185-187 ${ }^{\circ} \mathrm{C}$ (from EtOH-Et O); IR (KBr) $1633 \mathrm{~cm}^{-1}$ ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 2.75(\mathrm{~s}, 3 \mathrm{H}) ; 6.01$ ($\mathrm{s}, 2 \mathrm{H}$); 7.3-7.4 (m, 3H); 7.46 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$); $7.78(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}) ; 7.85(\mathrm{t}, 1 \mathrm{H}, J$ $=7.5 \mathrm{~Hz}) ; 7.92(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}) ; 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz})$; $8.53(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}) ; 8.91(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}) ; 9.24(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$: C, 69.79; H, 5.49; N, 10.17. Found: C, 69.43 ; $\mathrm{H}, 5.68$; N, 10.22

3-Methyl-2-phenyl-12H-pyridazino[$\left.1^{\prime}, 6^{\prime}: 1,2\right]$ pyrido $[3,4-b]$ -indol-5-ium Mesitylenesulfonate (45). Obtained by method $\mathrm{A}, 37 \%$: mp 294-296 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$); $\mathrm{IR}(\mathrm{KBr}) 1635 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) \delta 2.75(\mathrm{~s}, 3 \mathrm{H}) ; 7.4-7.5(\mathrm{~m}, 6 \mathrm{H}) ; 7.6-7.7$ $(\mathrm{m}, 2 \mathrm{H}) ; 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 8.52(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}) ; 8.78$ (s, 1 H); $8.98\left(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}\right.$). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{-1 /}$ ${ }_{2} \mathrm{H}_{2} \mathrm{O}$ C, 69.47 ; H, 5.44 ; N, 8.10. Found: C, 69.15 ; H, 5.19 ; N, 8.42 .

3-Methyl-2-p-tolyl-12H-pyridazino[$\left.1^{\prime}, 66^{\prime}: 1,2\right]$ pyrido[3,4-b]-indol-5-ium Mesitylenesulfonate (46). Obtained by method A $46 \%: \mathrm{mp} 307-309{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$); IR (KBr) $1638 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.49(\mathrm{~s}, 3 \mathrm{H}) ; 2.83(\mathrm{~s}, 3 \mathrm{H}) ; 7.47(\mathrm{~d}, 2 \mathrm{H}, J=$ 7.9 Hz); 7.53 (t, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}$); $7.62(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}$); 7.81 (d, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}$); $7.83(\mathrm{t}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}) ; 8.46(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ Hz); 8.84 (d, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}$); 8.84 (d, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}$); 8.98 (s , 1 H) $9.18\left(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}\right.$). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29}-$ $\mathrm{N}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.74 ; \mathrm{H}, 5.77 ; \mathrm{N}, 7.76$. Found: C, 68.46; H, 6.01; N, 7.42 .

2-Methyl-3-(2-thienyl)-12H-pyridazino[1',6':1,2]pyrido-[3,4-b]indol-5-ium Mesitylenesulfonate (49). Obtained by method A, 49% : $\mathrm{mp}>360^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$); IR (KBr) 1638 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.83(\mathrm{~s}, 3 \mathrm{H}) ; 7.16(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}) ; 7.33(\mathrm{t}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}) ; 7.47(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 7.81(\mathrm{~d}$, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}) ; 7.9-8.0(\mathrm{~m}, 2 \mathrm{H}) ; 8.32(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 8.62$ (d, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}$); $8.73(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 9.30(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{C}, 63.01 ; \mathrm{H}, 5.10 ; \mathrm{N}, 7.87$. Found: C, 63.34; H, 4.99; N, 8.12.

3-Methyl-2-pyridyl-12H-pyridazino[1', $\left.6^{\prime}: 1,2\right]$ pyrido[3,4-blindol-5-ium Mesitylenesulfonate (50). Obtained by method A, 36\%: mp 308-310 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$); IR (KBr) $1622 \mathrm{~cm}^{-1}$; ${ }_{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.79(\mathrm{~s}, 3 \mathrm{H}) ; 7.54(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}$); $7.78(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}) ; 7.81(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 7.94(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.9 \mathrm{~Hz}) ; 8.60(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 8.88(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}) ;$ $9.07(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 9.30(\mathrm{~s}, 1 \mathrm{H}) ; 9.40(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$: C, 68.22; H, 5.13; N, 10.97. Found: C, 68.03; H, 5.42; N, 10.85 .

Acknowledgment. The authors wish to thank the Comisión Interministerial de Ciencia y Tecnología (C.I.C.Y.T.) for financial support (Project PB90-0284).

[^0]: (1) Westphal, O.; Jahn, K.; Heffe, W. Arch. Pharm. 1961, 294, 3745.
 (2) (a) Baranova, N.; Sheinkman, A. K.; Kost, A. N. Khim. Geterotsikl. Soedin. 1973, 1266-1270. (b) Matia, M. P.; Ezquerra, J.; SanchezFerrando, F.; Garcia-Navio, J. L.; Vaquero, J. J.; Alvarez-Builla, J. Tetrahedron 1991, 47, 7329-7342. (c) G. Hajos, H.; Messmer, A.; Bátori, S.; Riedl, Z. Bull. Soc. Chim. Belg. 1992, 101, 597-607. (d) Matía, M. P.; Garcia-Navio, J. L.; Vaquero, J. J.; Alvarez-Builla, J. J. Liebigs Ann. Chem. 1992, 777-779. (e) Hajós, G.; Riedl, Z.; Gács-Baitz, E.; Messmer. A. Tetrahedron 1992, 48, 8459-8464
 (3) Potts, K. T.; Mattingly, G. S. J. Org. Chem. 1968, 33, 39853986.
 (4) Matía, M. P.; Ezquerra, J.; Garcia-Navio, J. L.; Vaquero, J. J.; Alvarez-Builla, J. Tetrahedron Lett. 1991, 32, 7575-7578.
 (5) Hydrolysis and decarboxylation of the ester group were observed in most of the examples, $1-13$, as has been observed before; see ref $2 b$ and references cited therein.

[^1]: (6) Standard parameters were used, see: Holzer, W. Tetrahedron 1991, 47, 9783-9792.

